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ABSTRACT

This paper examines different algorithms for calculating the shortest

path from one node to all other nodes in a network. More specifically, we seek

to advance the state-of-the-art of computer implementation technology for such
algorithms and the problems they solve by examining the effect of innovative
computer science list structures and labeling techniques on algorithmic
performance.

The study shows that the procedures examined indeed exert a powerful
influence on solution efficiency, with the identity of the best dependent upon
the topology of the network and the range of the arc distance coefficients.

The study further discloses that the shortest path algorithm previously docu~
mented as the most efficient is dominated for all problem structures by the

new methods, which are sometimes an order of magnitude faster.
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1.0 INTRODUCTION

Shortest and/or longest path analysis is a major analytical component of
numerous quantitative transportation and communication models [4,9,13,15,16,20,
23]. These mathematical models seek to improve efficiency and service by
increasing capacity, reducing travel time, minimizing congestion, reducing the
cost of transportation service, improving vehicle routing, or reducing energy
utilization. Such models usually utilize a network to represent the trans-—
portation system (which may consist of road segments, railroad tracks, and
other common carrier transportation routes) where one desires to find a numerical
value of the minimum time, cost, distance, energy usage, etc., or maximum
capacity between several pairs of points in the network. The former problems
are often called shortest path problems while the latter are called longest
path problems.

Finding these values in many applications often requires finding the
shortest or longest path from one point (called a root node) to all other points
(nodes) in the network, where nodes can be road intersections, railroad junction
points, airplane terminals, and so forth. Further, such information is often
successively required for several different root nodes and for a large number
of different criterion functions (time, distance, cost, etc.). Additionally,
applications often involve iterative determination of the shortest or longest
paths for several different values of each criterion function's coefficients
during sensitivity analysis. For many applications the networks are very large,
containing several thousand nodes and arcs (segments or links).

The longest path problem is often applied to schedule major projects such

as: phased network capacity improvement programs; maintenance, overhaul, and




leasing of large-scale transportation equipment; resource leveling; research

and development programs; and the market introduction of a new production service.
The longest path problem is the central component of critical path scheduling,
often designated by a variety of acronyms such as CPS, CPM, and PERT. Regard-
less of the name used, it is very important to realize that the longest path
problem is mathematically identical to a shortest path problem. Thus, the
algorithms in this paper apply to such problems and henceforth we will use the
term shortest path problem to refer to both problems.

The above discussion illustrates the remarkable pervasiveness and signifi-
cance of shortest path problems and the importance of algorithms to handle these
problems efficiently. Because of this, a number of algorithms have been developed
for finding the shortest paths from one node to all other nodes in large directed
networks. Dreyfus [8] has written an excellent paper classifying the types of
algorithms and giving theoretical computational bounds for each class.

While the literature contains many shortest path algorithms, it is important
to observe that there are only a handful of general! methods for solving shortest
path problems. FEach general algorithm has within it subalgorithms. That is,
there are special subproblems or sets of operations that must be handled in
order to execute the general algorithm; e.g., finding the minimum of a set,
breaking a loop, reconnecting subtrees, carrying out computations over the nodes
and arcs of subtrees, etc. The literature basically contains descriptions of
a large number of different ways to handle these subproblems; unfortunately,
many of these alternatives are referenced in the literature as different algo-
rithms rather than as variants of the small class of general algorithms.

Historically these "algorithms' were developed and published because
researchers devised ingenious ways of handling one or more of the subproblems

in a mathematically efficient manner; i.e., the developer was able to show
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that his algorithm wouid require in the worst case fewer addition and/or comparison
operations than another algorithm.

The use of digital computers has shown, however, that algorithms which have
excellent worst case bounds are not necessarily the most efficient (in terms of
computer time) for solving real-world problems. This is partially due to the
fact that real-world problems have unique features (e.g., only a fraction of the
total number of possible arcs, special network or grid structures, small distance
coefficient values, etc.) which are often not reflected in the worst case bounds.
More importantly, many of the 'good" (polynomially bounded) algorithms assume
that certain information is available or updated after each iteration at no
computational expense; however, when using a digital computer to execute the
algorithm, the maintenance of such information actually requires non-trivial com-
puter storage, retrieval, and comparison operations. Therefore, mathematically
efficient algorithms do not necessarily result in efficient computer solution
procedures.

This has, consequently, spawned an important interface between mathematics
and computer science, called computer implementation technology [14]. Computer
implementation technology is an essential and often neglected component of the
study of classes of algorithms. It is in fact a major practical tool for dealing
with the ubiquitous issue of computational complexity, since no analysis of
computational complexity can be truly meaningful without reference to the techno-
logy by which solution systems are implemented.

Computer implementation technology invc.ves the design of special procedures
to carry out subalgorithms of a general method efficiently on a digital computer.
Typically, this requires research to determine: (1) the kinds of information
to keep on hand for executing certain operations most effectively, (2) the kinds

of data structures in which to express this information, and (3) the actual




methods for processing these data structures to make the desired information
available when it is needed. Effective use of such research further involves
design by feedback, iteratively amending and integrating component procedures by
reference to computational analysis and performance.

The evolution of efficient methods for network flow and shortest path
problems (1,2,3,6,9,10,11,12,13,14,22,24) uniquely demonstrates the power of
computer implementation technology, properly applied, to yield gains that were
not previously suspected. For example, 2000 node 7000 arc minimum cost network
flow problems that required several minutes to solve in 1968 can now be solved
in only 20 seconds, using the same general algorithm, computer, and compiler
{3]. Similarly, Gilsinn and Witzgall [9] found that improved implementation
technology caused solution times for shortest path problems to drop from one
minute to slightly more than one second, using the same general shortest path
algorithm, computer, and compiler.

In the past, due to the lack of attention to developing systematized
principles and concepts, it was common for people to attribute variations in a
general algorithm to the skill (art) of the computer programmer. Recently, an
awareness has developed within many of the science disciplines, and particularly
within operations research, that the design of efficient computer programs for

solving mathematical problems is subject to the enunciation of key methodological

and analytical principles, and therefore is primarily a science rather than an art.

The excellent study by Gilsinn and Witzgall [9] pioneered this awareness
in application to shortest path algorithms and provides a unified structure for
describing such algorithms. The purpose of this paper is to extend this work,
to evaluate procedures not investigated in the Gilsinn and Witzgall study, and

to further demonstrate the importance of computer implementation technology by

the exposition of new procedures that are superior to those previously documented.
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This paper specifically focuses on characterizing and comparing different
algorithms for calculating the shortest paths from one node to all other nodes
in a directed network. This study shows that alternative list structures and
labeling methods indeed exert a remarkably powerful influence on solution
efficiency, and that the identity of the best of these methods depends upon
the topology of the network and the range of the arc length coefficients. An
additional significant result of the study is the disclosure that the new
implementation methods are sometimes an order of magnitude faster than the

previously fastest method.

2.0 NETWORK TERMINOLOGY AND STORAGE

This section contains formal definitions of the terms used to describe
shortest path problems and algorithms. In order to unify the literature in
shortest path methods and their implementation, we will largely use the terminol-
ogy of the Gilsinn and Witzgall study, departing only to make distinctions and
refinements not anticipated in previous work.

A directed network or simply a network G(N,A) consists of a finite set N
of nodes and a finite set A of arcs, where each arc a € A may be denoted as an
ordered pair (u,v), referring to the fact that the arc is conceived as beginning
at a node u £ N and terminating at a different node v € N.

A directed path or path is a finite sequence of arcs P = {al, ay, ...an}
such that for each {1 = 2, ...n, arc ay begins at the end of arc a_y- P is

called a path from node u to node v if a, starts at node u and arc an terminates

1

at node v. If a network contains a path from node u to node v, then v is called

accessible from u. A path P from u to v is called a circuit if u = v. A path

for which a ¢ aj for 1 # j is called arc-simple.
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Let 2(a) or £(u,v) denote a nonnegative length associated with arc
a = (u,v) of a network. Then we define the length of path P to be

n
d(p) = £ Q(ai). Path P from one particular node to another node is called

a short;;i path if d(P) is the minimum length of any path between these nodes.

A network may be represented in a computer in several ways and the manner
in which it is represented directly affects the performance of algorithms
applied to the network. Three basic ways of representing a network with 'N‘
nodes and lAl arcs are:

1. Use an |N|x |N] matrix € = (C;,), where element C;, = £(1,j). This
value is treated as "infinity" (in practice, some very large number) if the
arc does not exist. This representation has two shortcomings. First, it
assumes that the network does not contain multiple arcs for the same node pair.
Second, if the network is sparse (that is, most Cij = ® or equivalently
lA' 7 |N|2 is small) then computer storage is not effectively utilized.

Matrix representation is normally used with matrix methods for solving
shortest path problems. Such methods [15] are normally used to find the
shortest path between all pairs of nodes simultaneously. Because of their
large storage requirements, their application is restricted to relatively
small networks and will not be considered in this paper.

2. Another way of representing a network is to list all of the arcs in
the network by keeping for each arc its beginning node, ending node, and
length. This requires 3 lA |computer memory locations, which is generally
superior to the matrix representation, but is not well suited to the imple-
mentation of certain network processing operations. The next representation

to be described has more attractive memory requirements and is also more

amenable to processing.
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3. The most popular way of storing a network is to use a linked list
structure. In this method, all of the arcs that begin at the same node are
stored together and each is represented by recording only its ending node and
length. A pointer is then kept for each node (heading) which indicates the
block of computer memory locations for the arcs beginning at this node.

The set of arcs emanating from node u is called the forward star of node u
and denoted by FS(u); i.e., FS(u) = {(u,j) € A}. 1If the nodes are numbered
sequentially from 1 to lNl and the arcs are stored consecutively in memory
such that the arcs in the forward star of node i appear immediately after
the arcs in the forward star of node i-1, then this method, called the
forward star form, requires only ‘N' + 2 lAI units of memory.

Throughout this paper we will assume that the network is represented in
forward star form. In some cases we will further assume that the arcs of the
forward star of each node are ordered by ascending length; this will be called
a sorted forward star form. Figure 1 illustrates the storage of a network in
a sorted forward star form. The number in the square attached to an arc of
the network diagram is the arc length.

The forward star forms are commonly used with special algorithms called
labeling methods for implementing shortest path and network {low solution
procedures. In general, labeling methods are the most widely used methods for
industrial and governmental applications, and constitute the primary focus of
this paper because such methods are especially effective in application to
large sparse networks. Next we define some terms commonly used in describing

labeling algorithms.
3.0 TREE TERMINOLOGY AND LABELING TECHNIQUES

In the context of directed networks, a rooted tree, or simply a tree, is
a network T(NT,AT) together with a node r (called the root node), such that
each node of NT’ except r, is accessible from r by a unique arc-simple path

in T.
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A rooted tree T is called a minimum tree or shortest path tree of a
larger network G(N,A) if T contains all nodes of G accessible from r, and if
for each node v in NT’ the unique path P from r to v is a shortest path from
r to v in the network G.

Labeling algorithms typically start with a tree, T, consisting only of
the root node r and seek to enlarge and modify T until it becomes a shortest
path tree of a larger network G. Thus, an important computer implementation

component of such algorithms involves properly handling T and storing G.
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A common way of representing a tree in a computer is to think of the root
node as the highest node in the tree and all the other nodes hanging below the
root. The tree is then represented by keeping a pointer list which contains
for each node w # r in the tree, the starting node v of the single arc in the
tree terminating at w. This upward pointer is called the predecessor of node
w and will be denoted by p(w). Further, node w is called an immediate successor
of node v. For convenience, we will assume that the predecessor of the root,
p(r), is zero. Figure 2 illustrates a tree rooted at node 1, the predecessors
of the nodes, and other functions to be described subsequently. The predecessor
of a node is identified in the p array. For example, the precedessor of node
16 is node 5.

Most labeling algorithms keep another list indexed by the node numbers and
associated with the tree T. This list contains for each node v a label d(v),
whose value is the length of the unique path from r to v in T. (In some
implementations, d(v) is not always the correct length but an overestimate
that gradually converges to the correct length.) Henceforth d(v) will be
called the node potential of node v. Nodes not in T may or may not be labeled
with a node potential value; usually they are given the label «, indicating
that they are not yet reached by the tree. The root r has a node potential
of zero.

In Figure 2 the number in the square on each arc indicates the length of
the arc. The entries in the d array identify the length of the unique path
from the root to each node. Figure 2 illustrates additional tree information
expressed as node functions, which will be used in the computer implementation
procedures to be discussed subsequently.

The first of these functions, the thread function [1,12], is denoted by

t(x). This function is a downward pointer through the tree. As illustrated in
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Figure 2 by the dotted line, function t may be thought of as a connecting link
(thread) which passes through each node exactly once in a top to bottom, left
to right sequence, starting from the root node. For example, in Figure 2,
t(l) = 2, t(2) = 4, t(4) =5, t(5) = 16, t(16) = 8, etc.
Letting n denote the number of nodes in T (NT’AT)’ the function t satisfies

the following inductive characteristics:

a) The set {r, t(r), tz(r), e iay tn-l(r)} is precisely the set of nodes
of the rooted tree, where by convention tz(r) = t(t(r)), e = t(tz(r)), etc.
- k
The nodes r, t(r), ..., tk 1(r) will be called the antecedents of node t (r).

b) For each node i other than node tn—l(r), t(i) is one of the nodes such
that p(t(i)) = i, i1f such nodes exist. Otherwise, let x denote the first node
in the predecessor path of i to the root which has an immediate successor y
and y is not an antecedent of node i. In this case, t(i) = y.

c) tn(r) = r; that is, the "last node'" of the tree threads back to the
root node. |

The reverse thread function, rt(x), is simply a pointer which points in
the reverse order of the thread. That is, if t(x) =y, then rt(y) = x. Figure
2 also lists the reverse thread function values.

The depth function, dh(x), indicates the number of nodes in the predecessor
path of node x to the root, not counting the root node itself. If one con-
ceives of the nodes in the tree as arranged in levels where the root is at
level zero and all nodes 'one node away from'" the root are at level oune, etc.,
then the depth function simply indicates the level of a node in the tree.

(See Figure 2.)

The cardinality function, c(x), specifies the number of nodes contained

in the subtree associated with node x in the tree. By the nodes in the subtree
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associated with node x, we mean the set of all nodes w € NT such that the
predecessor path from w to the root contains x. (See Figure 2.)

The last node in a subtree function, f(x), specifies that last node in

the subtree of x that is encountered when traversing the nodes of this subtree

in "thread order.'" More precisely, f(x) = y where y is the unique node in the
subtree of x such that t(v) is not also a node in the subtree of x. (See
Figure 2.)

Note that both the domain and the range of each of the above discrete
functions consist of the set of nodes and thus are independent of the number
of arcs. Since lNl is the maximum number of nodes that could be in T, a one
dimensional array of size [Nl, called a node length array, is allocated to
each function during computer implementation. The procedures for updating
the values of the functions when the tree is reconfigured will be detailed

subsequently.

4.0 SHORTEST PATH PROBLEM AND LABELING METHODS

By means of the foregoing terminology, the problem of finding the shortest
paths from a given node r to all other nodes in network G(N,A) may be stated
as that of finding a minimum tree T(NT’AT) of G rooted at node r.

Labeling methods for computing such a minimum tree have been divided into
two general classes, label-setting and label-correcting methods. Both methods
typically start with a tree T(N;,A;) such that N, = {r} and A = #. A label-
setting method then augments NT and AT respectively, by one node v € N and one
arc (u,v) € A at each iteration in such a manner that u € N_, v € NT' and the
unique path from r to v in T is a shortest path. A label-setting method ter-
minates when all arcs in A which have their starting endpoints in NT also have

their ending endpoints in NT'

PR e —— T, e e LT
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A label-correcting method, on the other hand, always exchanges, augments,
or updates arcs in AT in a manner that replaces or shortens the unique path
from r to v in T, but does not guarantee that the new path is a shortest path

(until termination occurs). Using the notation defined in the previous section,

we now give a precise description of each of these general methods.

General Label-Setting Method

1. Initialize a tree T(NT‘AT) such that N, = {r} and Ay = #. Further,
set p(t): = 0, t € N; d(t): = ©, t € N - {r}; and d(r): = O.
(The notation a: = b sets a equal to b.)

2. TLet S'= {l(a,v): u & Nps veEN-N, (u,v) € AT NSEE Sh=N0 Soa o
step 4. Otherwise proceed.

3. Let d(u) + £(u,v) = minimum (d(p) + 2£(p,q)). Redefine

(p,q)ES
No: = Ny U {v}
Apt = Ap U {(u,v)}
p(v): = u
d(v): = d(u) + 2(u,v)

and repeat step 2.
4. Stop. T(NT,AT) is a minimum tree and for each node v € N, d(v) is
the length of a shortest path from r to v # r.
It is worth noting that a label-setting method only works for nonnegative
arc lengths. A label—cbrrecting method, however, works for negative arc lengths

as long as there are no circuits of negative length in the network G(N,A).

General Label-Correcting Method

1. Initialize a tree T(NT,AT) such that No = {r} and A, = @. Further,

o, t € N=- {r}.

set p(t): = 0, t € N; d(r): = 0; and d(t):
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Go to step 4 if there does not exist an arc (u,v) € A such that

d(u) + 2(u,v) < d(v). Otherwise, for such an arc,
Np: = No U (v}
Ap: = AT - {(s,v) € AT) U {(u,v)}
p(v): = u

d(v): = d(u) + 2(u,v)

Repeat step 2.

redefine

Stop. T(NT,AT) is a minimum tree and for each node v € N, d(v) is

the length of a shortest path from r to v # r.

Further,

i

a

shortest path from r to v exists (i.e., if p(v) # 0), then it may

be constructed by successively examining the predecessors of v

until the root node r is encountered.

5.0 EXPERIMENTAL DESIGN

Alternative implementation methods are evaluated in this study by solving

a diverse set of randomly generated shortest path problems using the same

computer (a CDC 6600), the same compiler (a FORTRAN RUN compiler), and executing

the codes during time periods when the demand for computer use was comparable.

Further, all of the codes were implemented by the same systems analyst and no

attempt was made to exploit any of the unique hardware characteristics of the

CDC 6600.

Even with these safeguards, minor differences between the solution times

of any two codes for a single test run of each must be regarded of questionable

significance.

for 100 different roots) and the average solution time reported.

makes use of a real~time clock routine supplied by CDC.

For this reason, each test problem was solved 100 times (i.e.,

Each code

This routine can be

employed using a FORTRAN subroutine call and is generally accurate to two

decimal places.

o

2o
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The reported times include only the elapsed time after input
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of the shortest path problem and prior to output of its solution. This includes

the time required to initialize the function arrays.

The problem set consists of shortest path problems from two distinct
topological groups. One set consists of rectangular grid networks. A p x q
rectangular grid network may be envisioned as having its nodes arranged in p
parallel rows each containing q nodes. Each node connects by arcs only to the
four nodes (if present) to its right and left and above and below. Thus a
p x q grid network has pq nodes and 4 pq - 2p - 2q arcs. It is important to
note, however, that the arc lengths are randomly generated. Thus, arc lengths
are not necessarily symmetric and the triangle inequality may not hold.

The grid network test problems all have 2500 nodes with rectangularities
of 50 x 50, 25 x 100, 10 x 250, and 5 x 500. These problems were generated
using a unifrom probability distribution with two unique distance ranges for
the arc lengths; the first range of arc lengths lies between 1 and 100 and the
second between 1 and 10000. Table 1 describes all of these grid problems and
contains solution times on the alternative implementations to be discussed
subsequently.

The second topologically distinct set of problems consists of random
networks. A random network is one in which two nodes are selected randomly
to form a new arc to add to the network. The nodes are selected using a uniform
probability distribution, subject to the restrictions that the two nodes are not
the same and arcs are not allowed to be duplicated. The random network test
problems all have 1000 nodes and contain either 5000, 10000, 15000, 20000,
25000, or 30000 arcs. For each of these problem sizes, two problems were
generated, one with arc lengths between 1 and 200 and the other with arc lengths

between 1 and 10000. Again the arc lengths were randomly selected using a
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Table II

Arc
Length
Nodes Arcs Range €1 c2 c3 C4 65 Sl S2 S3 sS4
1000 5000 1-200 15 .13 42 .28 .20 w20 -23 DNR .34
1000 10000 1-200 o 1 .28 .63 42 D .33 232 DNR .50
1000 15000 1-200 .44 .43 72 .58 47 .42 <39 DNR .61
1000 20000 1-200 .59 L .90 0] .61 D 47 DNR .72
1000 25000 1-200 .80 .80 1.17 .88 old .62 o0 DNR .81
1000 30000 1-200 .91 w30 1.3% 1.01 .90 .70 62 DNR .90
1000 5000 1-10000 .16 .13 .43 .28 .20 .50 v .30 .34
1000 10000 1-10000 .32 .29 .61 .43 .3 .51 45 .40 47
1000 15000 1-10000 .43 .43 .71 e .46 99 i S .49 .58
1000 20000 1-10000 .65 .64 .89 s 4L .63 .68 59 .62 .66
1000 25000 1~10000 .85 .85 1.21 .90 .79 .76 .61 .69 .70
1000 30000 1-10000 .97 .96 1.32 1.03 9L .88 .70 .86 .81

DNR--Did not run.

PR SR

L i e o S S

Sk




18

uniform probability distribution. Table II contains the computational results
on the random network problems.

To provide researchers with reproducible benchmarks, the appendix contains
FORTRAN listings of the problem generators and the two computer codes found to

be the best in this study.

6.0 IMPLEMENTATION TECHNIQUES FOR THE LABEL-CORRECTING METHOD

In this section we discuss a sequence of implementations of the general
label-correcting algorithm which successively utilize more and more information
(as embodied in the node functions) to determine the effect of this information
on the efficiency of the algorithm. The merits of these alternative implementa-
tions are then evaluated by solving the test problems.

6.1 Implementations Using Only p and d Functions

Step 2 of the general label-correcting method involves finding any arc a
which can be added to (or updated in) the tree with a resultant decrease in the
node potnetial of its ending node. One of the fundamental subalgorithms of
this general method involves searching for such an arc in an intelligent manner.
Several observations have been made in the literature regarding this search.

The most rudimentary observation is that if the arcs are sequentially examined,
it is not necessary to examine any arc (u,v) € A whose beginning node has an
infinite node potential since d(u) + 2(u,v) < d(v) will never be satisfied for
nonnegative arc lengths.

This observation extends quite naturally as follows. If each arc (u,v) €
FS(u) has been examined and founu to satisfy the condition d(u) + 2(u,v) 2 d(v),
then it is unnecessary to re-examine these arcs until the node potential of u
decreases. This observation is one of the primary motivating factors for

storing the network in a forward star form. As will be seen, the order in which
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forward stars of nodes are examined plays a major role in the efficiency of the
algorithm.

Based on the preceding observation, it is convenient to keep a sequence
list of nodes whose node potentials have decreased since their forward stars
were last examined. That is, nodes are added to the sequence list whenever their
node potentials are decreased and deleted from the list upon examining their
forward stars. By not allowing a node to appear more than once on this list,
it is possible to restrict the size of this list to a node length array. One
simple way to guarantee that a node is not duplicated on the sequence list is
to complement the forward star pointer of the node when it is added to (or
deleted from) the list. Using this technique, the sign of a node's forward
star pointer is checked before adding the node to the sequence list. If its
sign is positive, the node is added to the list; otherwise, it is already on
the list.

The sequence list can be managed in a variety of ways. In particular, if
the forward stars are examined in the order in which their identifying nodes
are placed on the sequence list, the list is said to be managed in a FIFO
(First-in, First-out) manner; if the forward star of the latest node added to
the list is examined before that of a node placed on the list previously, it is
said to be managed in a LIFO (Last-in, First-out) manner. Yet another way to
manage the sequence list is to pick the node at the front of the list to examine
next as in the FIFO procedure, but to add nodes at either the front or the back
of the list; that is, to handle the sequence list as a two-way sequence list
adding to either end but always deleting from the front. As will be seen, the
way in which the sequence list is managed has major ramifications for the effi-
clency of the algorithm. We now describe in detail the codes whose solution

times are indicated for grid networks and random networks in Tables I and II.
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Code Cl employs a FIFO sequence list, and the predecessor and node potential
functions. The list is processed by using two pointers, s and e, where s points
to the entry whose forward star is to be examined next and e is the position of
the last node added.

Code C2 utilizes the predecessor and node potential functions and a two-way
sequence list. The two-way sequence list is implemented as suggested by Pape [22].
That is, the sequence list is a node length array, called CL, identified by node

numbers, such that

-1 if node x was previously on the list
but is no longer on the list
0 if node x has never been on the list
CL(x) = {
+y if node x is on the list and y is the
next node of the list
{ + o if node x is on the list and x is the
last node on the list

In addition, the start and end pointers, s and e, are kept. (See the listing
of code C2 in the appendix.)

The solution times in Table II are very similar for codes Cl and C2. Thus
for random networks, the management of the sequence list does not seem to affect
solution speed. The results in Table I, on the other hand, show that this is
not true for grid networks. Code C2 is dramatically superior in this case.

This surprising difference can be explained as foliows. The minimum tree
and also most of the intermediate trees are very narrow and deep in grid networks,
due to the fact that only one or two tree arcs emanate from each node. This
causes the subtree of an arbitrary node v, in general, to exhibit the "narrow
and deep” property. Moreover, if the node potential of node v is decreased by
an amount & then the node potentials of all nodes in the subtree of v must

ultimately be decreased by § (unless the subtree later becomes restructured,
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in which case some node potentials will decrease by an even greater amount).

To illustrate, suppose arc (8,3) of Figure 2 is to be added to the tree and
d(3) is set to d(8) + 2(8,3) = 5 + 1 = 6 (hence d(3) is decreased by 2). Then
the length of the unique path from the root to each node in the subtree of node
3 is reduced. Consequently, the node potentials in this subtree should be
decreased.

The FIFO sequence list postpones updating these node potentials since node v
is added to the back of the list. In contrast, the two-way sequence list adds
v to the front of the list (if it is not already on the list). Thus, loosely
speaking, nodes in the subtree of v tend to be updated before other nodes are
examined.

This updating sequence helps to eliminate unnecessary node potential
corrections that are dominated by the § correction that should be transmitted
through the subtree. That is, an arc (p,q) may satisfy the condition
d(p) + 2(p,q) < d(q) only because d(q) has not been reduced by 6. The occurrence
of such unnecessary corrections can have a cumulatively deleterious effect.

In particular, each one causes a new node to be added to the sequence list

which has an "erroneous'" (i.e., dominated) node potential value. Each time such

a node is then selected from the list (if it has not in the meantime received

a "corrected'" node potential value), a correspondingly erroneous value is trans-
mitted to still other nodes. The difficulties of the process are thus perpetuated.

The effects of generating and transmitting erroneous node potentials, just
discussed, raise the question of whether a label-correcting method can be imple-
mented by means of more sophisticated list structures and processing techniques

with a net gain in computational efficiency. We now consider implementations

designed to respond to this question.
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6.2 Implementations Using p, d, t, ¢, and f Functions

The thread function, as observed earlier, provides an efficient way of
locating each node in the subtree of any node in NT' Thus, if the node po‘ :ntial
of node v is decreased by §, the thread function can be used to update all node
potentials in node v's subtree. As shown in [1], the last node and cardinality
functions can be used efficiently to update t.

We have designed two codes, C3 and C4, to test the major implementation
alternatives. Code C3 uses the p, d, t, ¢, and f functions as follows. The
code starts with N = {r = root}, At = @ and initializes p(v) = 0, v € N;
t(r) =r; t(v) =0, veN-{r}; dr) = 0; d(v) = =, ve N- {r}; c(r) = 1;

c(v) =0, ve N-{r}; f(r) =r; f(v) =0, ve N- {r}. Code C3 also uses a

logical node array e toindicate if a node's forward star requires scanning. In
particular, for v € N, e(v) = 1 if the node potential of v has changed since v
was last examined and e(v) = 0, otherwise. This array is initialized by setting

e(r) =1 and e(v) = 0, v € N - {r}. Using e, the algorithm then searches for
an arc (u,v) £ A such that § = ~d(u) + d(v) - Z(u,v) > 0, whereupon d(v) is
reset to d(v): = d(v) - & and the node potentials of all other nodes in the
subtree of node v are decremented by §. The algorithm terminates when e(v) = 0,
v € N. (Since each element of e has only two states, it is not necessary to
use a separate computer array for this function.)

The p, t, ¢, and f functions are updated by the following set of operations
where (u,v) denotes the arc to be added to AT. (The reader may find it helpful
to perform these operations using Figure 2 and letting (u,v) = (8,3).)

Step 1: Identify the node y such that t(y) = v. Then set t(y): = t(f(v)).
(Note that the identification of y may be efficiently done by first letting

y' = p(v). Second, if t(y') = v then y = y' and the process stops. Otherwise,

let y' = f(t(y')) and repeat the second step.)
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Step 2: Identify the first node x (lowest node) common to the predecessor
paths for u to r and v to r. Then set c(i): = c(i) + c(v) for each node i in
the predecessor path from u to x (excluding node x) and set c(i): = c(i) - c(v)
for each node i in the predecessor path from p(v) to x (excluding node x).

Step 3: Let w = p(t(f(v)). If w =0, then set w = r. Set f(i) =y
(i.e., the node y determined in step 1) for those nodes i on the predecessor
path from p(v) to w, excluding w itself if p(t(f(v)) # O.

Step 4: Set p(v): = u.

Step 5: Set t(f(v)): = t(u).

Step 6: Set t(u): = v.

The second code, C4, based on the more sophisticated node functions is a
simple modification of C3 in which the e array is replaced with a FIFO sequence

list.

6.3 A Primal Simplex Method Interpretation of the Label-Correcting Algorithm

The preceding implementations of the general label-correcting algorithm
may be viewed as specialized variants of the primal simplex algorithm where
the basic variables correspond to the arcs in AT’ augmented by artificial arcs
which start at the root r and end at node i for each i € N - NT such that
2(r,i) = «. The interpretation is especially direct for the codes C3 and C4,
which insure that the node potentials always satisfy complementary slackness,
i.e., ~d(u) + d(v) = 2(u,v), (u,v) € AL and -d(r) + d(1) = &(r,i), i € N - N.
Extending this interpretation, the process of selecting an improving arc (i,j)
corresponds to searching for an arc which violates dual feasibility. The process
of adding such an arc (t,s) to NT and deleting an arc (p(s),s) from AT is
equivalent to a simplex basis exchange. (Note that if p(s) = O then arc (p(s),s)

corresponds to an artificial arc and is not a member of AT') The update of the
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node potentials after performing this basis exchange simply maintains comple-
mentary slackness.

From this point of view, the replacement of the e array of C3 with the
FIFO sequence of C4 corresponds simply to the use of different pivot selection
rules. Tables I and II show that this change of pivot selection strategy strictly
improves solution time.

The previous codes Cl and C2, on the other hand, correspond to a deferred
updating version of the primal simplex algorithm in the sense that a basis
exchange is performed each time an arc is added to AT’ but the full set of
updated node potentials in a subtree are not immediately determined. In particular,
codes Cl and C2 differ from the codes C3 and C4 by requiring that complementary
slackness be maintained only '"locally" rather than globally. The times in
Tables 1 and II demonstrate that it is not necessarily beneficial to maintain
complementary slackness after each iteration. Code C2, while postponing the
update of the dual variable (node potential) values, appears to balance the
distortion caused by using locally updated dual variable values with the work
required to maintain globally updated values.

6.4 Additional Implementations Using Alternative Pivot Strategies

As a result of the interpretations of these codes as variants of the primal
simplex method, we undertook to test variations of C3 and C4 that used other
types of pivot strategies. First, code C4 was modified by scanning the forward
star of a node removed from the FIFO list multiple times. Each time the forward
star is scanned, the arc violating dual feasibility by the largest amount is
selected for the basis exchange. This pivot criterion was tested because it
has been shown in other network flow applications to be more effective than
simply pivoting the arcs in a "random" order [5,10,11,24]. The times for this

variant of C4 are not shown in Tables I and Il because, contrary to the results
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for other types of network flow problems, the solution times were uniformly
107 to 15% slower than for the ''unordered'" selection procedure.

Following this, we tested a number of other more sophisticated pivot
criteria. Mulvey (2] has shown that an excellent pivot criterion for large
transportation and transshipment problems derives from the use of an arc
Mulvey's approach involves two parameters r and s, where r

candidate list.

specifies the maximum number of arcs on the list and s specifies the maximum

number of pivots to be made before revising the elements on the list. The
candidate list is created by sequentially examining the forward star of nodes
with an e value of 1 in code C3 and selecting arc (u,v) in each forward star
which violates -d(u) + d(v) < 2£(u,v) by the largest amount (if one exists)

for inclusion on the list (accumulating at most r such arcs). Each time the

list is revised, the search for arcs is initiated at the node following the
node where the search was stopped when building thelprcvious Iigt. It r
eligible arcs cannot be found, the size of r is reduced to the number actually
encountered.

The candidate list approach was incorporated into code C3 and tested for
several different list sizes. The outcome, again surprisingly, yielded solution
times inferior to those of code C4.

We then designed another variant of the candidate list approach, which

made use of the sequence list of code C4. In particular, the first r nodes

were taken from the sequence list to form a node candidate list. Several
different strategies were tested for picking nodes off this candidate list.
First, the nodes were selected in increasing order of their cardinality function
value, and the forward star of the selected node was scanned.

The logic behind this pivot selection strategy is that nodes with larger

cardinality function values are likely to be closest to the root node, indicating
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an increased attractiveness for being examined first. Several different list
sizes were tested, but none reduced solution times. Similarly, tests were
conducted for the strategy of selecting the nodes in increasing order of their
node potential values. This also failed to reduce solution times.

These results strongly suggested that more sophisticated versions of
special purpose simplex codes using globally updated node potentials are not
competitive with the simpler label-correcting code C2. Before submitting
completely to this conclusion, however, we decided to test a different imple-
mentation of the simplex method where the ¢ and f functions are replaced by
the reverse thread, rt, and depth, dh, functions. The primary motivation
underlying this implementation is that these functions can be updated more
easily than the previous functions in the setting of shortest path problems.

(This is not true, however, in the setting of other network flow problems.)

6.5 Primal Simplex Implementations Using p, d, t, rt, and dh Functions

The implementations based on the reverse thread and depth functions,
like the preceding implementations, use the thread function to find and update
all node potentials in a subtree. The rt and dh functions are used to update
t, replacing the ¢ and f functions in this task.

First, a code C5 was implemented using p, d, t, rt, and dh functions
initialized such that p(v) = 0, v € N; t(r) = rt(r) = r; t(v) = rt(v) = 0,
veN-=-{r}; d(r) = 0; d(v) = @, v e N~ {r}; dh(v) = 0, v € N. Additionally,
code C5 uses a FIFO sequence list to locate an arc (u,v) € A such that
§ =-d(u) + d(v) ~ 2(u,v) > 0, whereupon all nodes in the subtree of node v
are decremented by 8 and "added to" the sequence list. Simultaneously, the
depth of each node in this subtree is incremented by ¥ = d(u) - d(v) + 1. The

algorithm terminates when the sequence list is empty.
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The p, t, and rt functions are updated by the following steps where (u,v)

denotes the arc to be added to AT. (The reader may find it helpful to perform

these steps using Figure 2 and letting (u,v) = (8,3).)

Step 1: Identify the first k > 1 such that dh(tk(v)) < dh(v). (Note that
the identification of k should be done simultaneously with the updating of d
and dh since identifying k requires tracing out the nodes in v's subtree.

In fact, tk-l(v) is the last node in the subtree of v.) Set t(tk_l(v)): = t(u),
re(ew): = 1w, tre): = t5(v)), and re(e¥(w): = re@).

Step 2: Set t(u): = v, rt(v): = u, and p(v): = u.

The solution times in Tables I and II indicate that the special purpose
simplex code C5 is 25% to 30% faster than the equivalent method using the
p, d, t, ¢, and f functions, code C4. The results also clearly show the
importance of matching data structures with algorithmic steps. Further, the
results indicate that the code C5 is usually the first or second fastest label-
correcting code. The code most often superior to C5 is code C2. As with code
C4, we modified code C5 to perform a number of candidate list pivot strategies.
None of these variants improved solution times, however.

These results raise the question as to why the ''quasi-simplex" code C2,
which defers the complete updating of node potentials is generally superior to
the full simplex codes C3, C4, and C5 (and to their dominated variants whose
times are not reported in the tables). Analysis of the computational data for
these codes discloses that the number of pivots (label-correcting iterations)‘
made by code C2 typically is on the order of 1 1/2 to 2 times the number of
nodes in the problem. Observe that any label-correcting method which starts

with a tree consisting of only the root node, must make at least as many pivots

as the number of problem nodes if each node in G(N,A) is accessible from the
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root. Thus, the margin for improvement in the number of pivots made by C2
is small.

In fact, the simplex codes C3, C4, and C5 do achieve some of this theoreti-~
cally available improvement. In particular, the average number of pjvots made
by these codes is approximately 1 3/8 to 1 1/2 times the number of nodes.

The augmentations of codes by more sophisticated pivot rules still require
pivots ranging from 1 1/4 to 1 3/8 times the number of nodes. However, these
small gains in the number of pivots do not represent corresponding gains in
solution time, and in fact lead to net losses. It appears that the additional
overhead involved in maintaining and updating the extra functions (plus
possibly maintaining a pivot candidate list), simply overshadows the gain
achieved in reducing the number of pivots for sparse shortest path networks.
However, as density increases in the shortest path networks, the pivot reduction
achieved by the full simplex codes over the quasi-simplex code C2 becomes
effective. In particular, the results in Table II indicate that the simplex
code C5 becomes comparable to C2 at 20000 arcs and is the fastest label-
correcting code for the 1000 node random networks with 25000 and 30000 arcs.

Thus, it appears that as the networks become sufficiently dense, it is worth-

while maintaining complementary slackness.

7.0 IMPLEMENTATION TECHNIQUES FOR THE LABEL-SETTING METHOD

In this section we discuss several implementations of the general label-
setting method. The primary difference between these implementations is the
way in which the minimum in step 3 of the algorithm description is found.

As for alternative implementations of the label-correcting method, these imple-

mentations are evaluated by solving the same test problems using the same

computer and compiler.
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A naive implementation of the general label-setting method would be to
find the set S of step 2 by examining all arcs in A and then calculating and
discarding node potentials to find the minimum of step 3. This involves
examining all arcs during every execution of step 2, as well as performing
many unnecessary node potential calculations in step 3. The implementations
described in this section make use of temporarily retained node potentials
in such a way that each arc in A is examined at most once, thereby avoiding
extensive recalculation.

As a basis for understanding these implementations, it is useful to observe
that steps 2 and 3 of the label-setting method simply find an arc from a tree
node to a non-tree node which yields the minimum distance extension. Figure
3 illustrates one way of viewing these steps at some iteration where the
tree T(NT’AT) consists of the solid line arcs and their associated nodes. The
dashed line arcs and their ending nodes NE indicate possible tree extensions.

(Note that N-N_ may not be equal to NE.)

i
By reference to this diagram, it may be seen that steps 2 and 3 can be

performed by keeping a temporary node potential and predecessor for each node

v in NF such that d(v) = minimum (d(u) + 2(u,v)) and the predecessor of v is
: u £ N
T

set to a node u which yields the minimum node potential for v. Thus, if

p(v) = u then -d(u) + d(v) = £(u,v). Step 3 then adds a node v in N with
the smallest temporary node potential to NT and correspondingly adds its arc
(p(v),v) to'AT. After performing this step, node v's potential will never
change (i.e., it is assigned a permanent node potential at this time) and arc
(p(v),v) is permanently assigned to the tree. The name label-setting stems L

from this property of the algorithm.
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In the following subsections we discuss four alternative implementations
for carrying out steps 2 and 3 in this manner. These implementations differ
in the way they handle the following fundamental operations: (1) the computa-
tion and updating of temporary node potentials, (2) the determination of the
minimum temporary node potential, and (3) the assignment of one or more
temporary node potentials to a node in NE'
7.1 Interpretation of the Label-Setting Method as a Primal Simplex Method
Before discussing these implementations, it is interesting to observe
that the label-setting method may be viewed as a special purpose primal simplex
method where the basic variables correspond to the arcs permanently assigned

to A augmented by artificial arcs which start at the root r and end at

T’
node i for each i € N - NT such that 2(r,i) = ®. The node potentials clearly
satisfy complementary slackness at each iteration; i.e., -d(u) + d(v) = Z(u,v),

(u,v) € AT and -d(r) + d(i) = #(r,i), i € N - NT' Further, the process of
selecting an improving arc (i,j) to enter the basis corresponds to searching
(in some fashion) for an arc which violates dual feasibility (i.e.,

-d(i) + d(j) £ 2(i,j)) by the largest amount. The process of adding such an
arc (t,s) to A,r and deleting the artificial arc (r,s) from this basis is
equivalent to a simplex basis exchange. The setting of the node potential of
node s after performing this basis exchange simply maintains complementary
slackness.

Thus, the label-correcting and label-setting methods are both simply
variants of the same general algorithm. More specifically, they are both
special purpose primal simplex methods which use different pivot strategies.
It is well known in linear programming literature that searching for the
variable which violates dual feasibility by the largest amount at each itera-

tion to enter the basis does not usually produce good solution times. In fact,
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such an approach normally results in unusually large solution times. However,

in the case of shortest path problems with nonnegative arc lengths, the
following subsections demonstrate that various researchers have devised inge-
nious ways of exploiting the topology of the problem so that such a pivot

strategy can be performed by examining each variable at most once.

FIG. 3 - LABEL-SETTING ITERATION

7.2 Dijkstra Address Calculation Sort

The first implementation to be discussed is the one originally developed

by Dial (6], called code S1. Several studies [9,23) of shortest path algo-

rithms have concluded that code S1 is the fastest code, superior to all other

label-setting and label-correcting implementations.

The Dial code operates in accordance with the previous observations by

keeping a unique temporary node potential and predecessor for each node v in
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NF such that d(v) = minimum (d(u) + 2(u,v), and maintaining p(v) = u for a

u € NT

node u satisfying d(v) = d(u) + £(u,v). Likewise, at each iteration, a node v
in NE with the minimum temporary node potential is added to NT and its arc
(p(v),v) is added to A,.

The chief feature of code S1 is the manner in which temporary node poten-
tials are updated and their minimum is identified. In particular, after

adding node v to N the updating is accomplished simply by scanning the

T
forward star of node v. The new candidate values for node potentials imputed
by these arcs are then calculated and compared with their current temporary
node potentials, retaining the smaller one with its corresponding predecessor.
The Dial implementation then identifies the minimum temporary node
potenti:i using the following observation. Each temporary node potential
equals a permanent node potential plus the length of some arc. Consequently,

temporary node potential values may be uniquely represented modulo (Qmax 4+ 1)

where Qmax = maximum £(a). That is, if d(p) # d(q), where d(p) and d(q) are
aecaA

temporary node potentials, then d(p) modulo (Qmax + 1) # d(q) modulo (Qmax =y
To see this, suppose that node v has the minimum temporary node potential
at the current iteration. Then d(u) < d(v) for u ¢ NT and thus for t € NE
d(v) < d(t) < d(v) + Qmax' In other words, at each iteration all temporary
node potentials are bracketed on the lower side by d(v) and on the upper side
by d(v) + lmax' Thus it is possible from one iteration to the next to uniquely
represent all temporary node potentials modulo (lmax !
To find the minimum by this procedure, it is convenient to use a computer

array k of size Qmax + 1 where
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0 if i # d(v) modulo (% + 1), for any v € N
max E

k(1) =
v, if i = d(q) modulo (2 + 1), for some q € N_,
i max E

where P is a pointer which points to all nodes in NE that have a modulo
temporary node potential value of i. The nodes in NE that have the same modulo
temporary node potential value (and thus, on any given iteration, the same
temporary node potential value) are identified by chaining the nodes by a
two-way linked list. Thus, every node with the same temporary potential value
is linked to an antecedent and a successor node (which may be dummies at the
"ends" of the list). When a node's temporary potential changes, the node is
disconnected from the chain simply by re-linking its antecedent and successor
to each other. This array achieves an "automatic sort" of the nodes in Np
relative to their temporary node potentials. Figure 4 illustrates the sort

structure induced by the k array and the two-way linked lists, representing

node names by the symbol ni.

k
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The current minimum temporary node potential is found by sequentially
examining the elements of k in a wrap around fashion. Each time a nonzero
element of k is encountered, the current minimum node potential is that of
the nodes associated with this element, and examination of k resumes at the
next nonzero element of k on the next iteration.

To describe the implementation of this algorithm, it is convenient to
define the following terms:

1. The imputed node potential value of node g, relative to the forward

star of v, denoted by dv(q), is difw) + 2(v,q)-

N

An Improving imputed node potential dv(q) is one such that
dv(q) < dlq); f.€., dv(q) is smaller than the current minimum
temporary node potential of node q.
3. Node q is an improving node relative to FS(v) if it has an improving
imputed node potential.
4. A node v is scanned by examining FS(v) and updating d(q) and p(q)
for each improving node q € FS(v); i.e., d(q): = dv(q) and p(q) = v.
To implement this approach, the algorithm initializes p(v) = 0, v € Nj
d(r) = 0 and d(v) = ©, v e N - {r}; and k(i) =0, 0<is® _. The root
node r is then scanned and the improving nodes of FS(r) are "added to" the
appropriate elements of k. The first pass of the k list starts at k(0),
examining the elements of k in sequence until the first nonzero element is
encountered. Each node v associated with this nonzero element is then
sequentially removed from the two-way chained list and scanned. Any improving
node q located during the scan of v is removed from "its current position" in
"k and moved to its new position dv(q) modulo (gmax +1). (1f d(q) = « then

node v has never been added to k and thus no step is required to remove it.)
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At each subsequent iteration, the examination of array k resumes where
it left off (and wraps around if necessary) to find the first nonzero entry.
This entry identifies a node with the new minimum temporary node potential.
All chained nodes with this temporary node potential are then removed from k
and scanned in the manner previously indicated. The algorithm stops when a
complete pass of k is made without finding a nonzero entr

This approach is called an address calculation sort because the insertion
and deletion of an item from the list simply involves calculating an address
in a convenient and straight forward manner. Its application to shortest
path implementations, as proposed and coded by Dial, is known in the litera-
ture as CACM Algorithm 360 (see [6]). This algorithm, as noted earlier, was
found by Gilsinn and Witzgall [9]), as well as by authors of several unpublished
studies, to be the most efficient shortest path method for problems with non-
negative arc lengths.

Two attractive features of this algorithm, in addition to its efficiency,
are its simplicity and the structuring which assures that each arc is examined
at most once. This latter feature, which is independent of the use of the
address calculation sort, follows from the fact that an arc is scanned in a
given iteration if and only if its starting node has a minimum node potential
at that iteration. Every node 'reachable'" from the root must have a minimum
potential at some step, but never more than once, thus only the arcs starting
at reachable nodes are examined at all.

This implementation has two major time consuming tasks: (1) inserting
and deleting nodes in the two-way linked array when their node potentials are
reduced, and (2) examining the elements of k to find the next minimum. The time

required by the first task is partially illustrated by the increasing solution
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times of Table II when the number of arcs is increased. The effort of the
second task is dramatically shown by comparing the times in Tables I and 1I
for the different arc length ranges.

These solution times generally show that the algorithm's performance
depends on the maximum arc lengths, number of nodes, and number of arcs.

Each of these items has a direct or indirect influence on the two main com-
putational tasks. More specifically, the maximum arc length directly affects
the sparseness of the k array (as measured by t/(lmax + 1) where t equals the
number of nonzero entries in k). As the sparseness of k increases, more
elements of k must be examined at each iteration to find the new minimum.

The number of nodes and the number of arcs in the network both indirectly
affect the sparseness of k since these parameters influence the number of
nodes with temporary node potentials. Additionally, these parameters affect
the number of nodes whose node potentials decrease from iteration to iteration
and thus require relocation in the two-way linked lists.

Another limitation of this implementation stems from its computer memory
requirements. In particular, the k array is of size Qmax + 1 which can be
prohibitive for large arc lengths. Different ways of coping with these limita-
tions are discussed subsequently.

7.3 Dantzig Address Calculation Sort

One way to reduce the effort of inserting and removing nodes on the two-
way linked list is to postpone adding nodes to the list. This can be done by
observing that it is unnecessary to scan the entire forward star of the node
v when it is assigned a permanent node potential. In particular, only the

endpoint of a minimum length arc in such a forward star needs to be considered

for addition to k. This follows from the fact that all temporary node potentials

determined from node v will be greater than or equal to the node potential
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determined for the endpoint of a minimum length arc of FS(v). We now describe
an approach designed to exploit this observation.

In order to limit the nodes considered for addition to k by selecting
a minimum length arc from FS(v), it is convenient to store the network G(N,A)
in a sorted forward star form. George Dantzig [4] was the first to suggest
this type of scheme, and thus we refer to it as the Dantzig address calculation
SOXL.

At first glance, the Dantzig address calculation sort appears to incur
substantial pre-processing work--a fact that has apparently discouraged other
researchers from pursuing this approach. Indeed, for a 'one-shot'" solution
of the shortest path problem, the effort devoted to organizing the data in a
sorted forward star form outweighs the advantages to be gained. However, it
is important to recognize that the construction of a large transporation net-
work, as must commonly be done for a large city, costs hundreds of thousands
of dollars. Further, once this data base is constructed, it is used again
and again to find shortest path trees for alternative root nodes. These
repeated applications can all be based on a single pre-processing effort.

Additionally, changes to the data base of such large transporation net-
works generally involve only a small portion of the overall configuration
(adding or deleting certain arcs, or changing the lengths of others). Thus,
minimal additional work is required to amend the sorted forward star form to
accommodate the effect of such changes.

It is possible to take advantage of a network in sorted forward star form
by modifying the code S1 in the following principal way. The improving nodes
of the forward star of each node in NT are sequentially added to the two-way
linked list (the two-way linked list is actually replaced by a one-way linked

Iist in this implementation) as the previous node of NT is removed. Thus,
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the one-way linked list contains at most as many nodes as nodes in NT'
Additionally, each time a node n, is added to the one-way linked list,

the predecessor of n, at the time it is added (i.e., the forward star node

which put node ni on the list) is paired with ny and added to the list.

That is, each item on the one-way linked li<{ 1s a pair which consists of a
node and its predecessor. This has several advantages. First, it allows a
node to appear more than once on the one-way linked list and thus eliminates
the need to move nodes when their temporary node potentials are decreased.
This, in turn, postpones the removal of a duplicate »ode from the one-way
linked list until the temporary node potential imputed to this node by its
paired predecessor is a minimum. This correspondingly postpones the scan of
this predecessor to identify its next improving node as long as possible.

The algorithm basically operates in the manner previously described for
S1 except that: (1) The two-way linked list is replaced by a one-way linked
list. (2) The forward star of each node v in N, is scanned until an improving
node u is found, whereupon u is placed on the linked list with its predecessor
v, and p(v) is set to v and d(v) is set to d(p(v)) + 2(p(v),v). (Node p(v)
is not scanned again until the ordered pair (v,p(v)) is removed from the linked
list.) (3) k is sequentially searched for the next minimum as before.

It should be noted in this implementation, however, that the next nonzero
element of k may not point to the next minimum, as was the case for Sl. Thus
when a node v is removed from the linked list, it is discarded if its paired
predecessor differs from its current predecessor in array p, since this implies
that v has already been assigned a permanent node potential. In any event,
the predecessor paired with v is scanned for its next improving node. If an
improving node is found, it is added to the linked list in the manner already

described.
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In the case that v's paired predecessor is equal to its current predecessor
p(v), then v's temporary node potential is a minimum and v is assigned a perma-
nent potential and added to NT' Further, node v is scanned as described in
step 2. Code S2 embodies this implementation. A precise description of the
implementation is given by the listing of the code in the appendix.

The advantages of this implementation are: (1) the algorithm can be
terminated when all nodes are permanently labeled; (2) a node is never moved
on the linked list when its node potential is improved; and (3) the postpone-
ment of adding temporary node potentials to k deeps less information on d and
potentially avoids adding dominated values to k.

Because of (1) it is not necessary for k to be empty; consequently, even
when all nodes are reachable from the root, it is not necessary to examine
each arc once. The strategy of (2) could have been applied in the Dial
implementation, but is not, because in the Dial implementation if a node is
duplicated on the linked list, the number of nodes on the linked list could
be as large as the number of arcs. This is normally prohibitive because of
computer memory space. However, in the S2 implementation, the number of nodes
on the linked list will never exceed the number of nodes in the problem since
there is at most one node on the linked list for each node in NT'

The computational results in Tables I and 11 reflect these advantages. The
results in Table II indicate that the code S2 strictly dominates code S1 on pro-
blems with 10,000 or more arcs (i.e., problems with an average of 10 or more arcs
per node). A thorough analysis of these results indicates that this dominance
results primarily from advantage (1) above. Namely, on problems with 10 or
more arcs per node, S2 examines only a subset of the arcs before stopping.

This indicates that the superiority of code $2 should become more pronounced

on denser problems. In additfon, the results in Table II indicate that code S2
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is the fastest code for problems with 10,000 or more arcs in the 1-200 arc
length range and for problems with 15,000 or more arcs in the 1-10,000 arc
length range.

The results in Table I, however, indicate that code S2 is inferior to
code S1 for grid problems. This is due to the fact that code S2 has to
examine almost every arc on these sparse problems. Dantzig in [4] suggests
pre-ordering the arc lengths in each forward star before solving the problem.
Thus, we called the above code the Dantzig address calculation sort. Next
we briefly discuss a number of our attempts to improve this method.

7.4 Improvements to the Dantzig Address Calculation Sort

Recall that code S2 keeps at most one entry on k for each node with a
permanent node potential. Thus for problems with 1000 nodes and with arcs
in the 1-10,000 arc length range, k is very sparse. As a result, a lot of
time is spent searching for the next nonzero entry of k.

In an effort to reduce this search time, we tried two different imple-
mentation strategies. The first was simply to partition k into segments of
equal length and to keep counters of the number of nonzero entries in each
segment. This was done for segment sizes of 16, 32, 64, 128, and 256. The

algorithm then examined the counters to determine if any of their associated

elements contained a nonzero entry. If not, all the elements of the segment

could be skipped without being submitted to examination. The results of this
testing are not shown in Table II because this procedure did not improve
solution times.

This testing did disclose an interesting piece of information, however.
Namely, the tests indicated that the nonzero entries of k are approximately
uniformly distributed in R. (Note this is probably due to the fact that the

arc lengths were generated using a uniformly distributed probability distribution.
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Thus, the above results may not hold for problems whose arc lengths do not
satisfy this property.) Due to the sparseness of k, this implies that each
counter value is small and thus each segment of k contains very few nonzero
entries.

To take advantage of this finding, we aggregated the segments of k.

That is, rather than chaining together nodes with the same temporary node
potentials, we chained together all nodes in each segment. We then linearly
sorted the elements of a segment at the point at which it was selected for
examination. This type of sort is called a single radix sort [19] and the
radix r is the size of each segment. Code S3 is a modification of code 52
and uses a single radix sort.

The results in Tables 1 and II indicate that code S3 dramatically dominates
codes S1 and S2 on grid problems. Further, code S3, in contrast to codes Sl
and S2, is very stable as rectangularity varies. Similarly, the results in
Table II indicate that code S3 strictly dominates code S1 and dominates code
$2 on the sparser random networks. As density reaches 20 arcs per node,
code S2 dominates code S3.

Besides its computational improvement, the single radix sort has an addi-
tional advantage: It requires less computer memory. The size of the k array
is reduced from (lmax + 1) to (Zmax s i e

However, better computational bounds (based on worst case analysis) are
available for balanced and unbalanced binary sort procedures [16,19] than for
the single radix sort procedure. Consequently, we developed a code, S4,
based on the Dantzig approach using an unbalanced binary sort to test whether
the better theoretical worst case bounds might supply a practical advantage.
Tables 1 and II indicate that S4 is slower than S1 and S2. We did not use

a balanced binary sort, which has a still better bound (i.e., logarithmic

=
.
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bound) than the unbalanced binary sort, because the Gilsinn and Witzgall study
[9] as well as other unpublished studies found the Dijkstra algerithm using a
balanced binary sort to be slower than code S1.

Without going into great detail, an unbalanced binary sort works by keeping
a binary tree of numbers (nodes) with a root number (node). A number is added
to the list by comparing the number with the root. If the number is smaller,
it is moved downward to the left and compared next with the number in that
position. If the number is larger, it is moved downward to the right and
compared next with the number in that position. This type of comparison and
movement continues until the bottom of the tree is reached along some path.
At this point, the number is hung to the left if it is smaller than the last
tree number to which it was compared. Otherwise, it is hung to the right.
The minimum is always the left-most node in the tree. The tree is
called an unbalanced binary tree because the depth of the bottom nodes in the

binary tree may vary greatly.

8.0 EVALUATION SUMMARY
8.1 Solution Times

The results in Tables I and I1 indicate that the code Sl previously
believed to be the fastest code for calculating the shortest path from one to
all other nodes in a network is dominated by codes C2, S2, and S3. Further,
the study shows that the most efficient solution procedure depends on the
topology of the network and the range of the arc length coefficients. On grid
networks and sparse random networks code C2 is the fastest. In fact, this code
is sometimes an order of magnitude faster than Sl. As density increases, code

S2 dominates C2. This dominance depends both on density and the range of the

arc length coefficients. For example, for a problem whose arc lengths are in
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the 1-200 range, code S2 dominates C2 when the average number of arcs per node
exceeds 10; however, for a problem whose arc lengths are in the 1-10,000 range,
code S2 does not dominate C2 until the average number of arcs per node exceeds
) o

8.2 Memory Requirements

Table III contains the computer array requirements of each code. Code C2
not only computationally dominates the other codes on grid and sparse network
problems, but also dominates them in terms of computer memory requirements.
Table II indicates the paradox involved in using the label-setting codes to
solve large shortest path problems. In particular, code S2 is the fastest of
all the codes (including C2) on dense problems but requires substantial computer
memory which often would prohibit using it to solve such problems.

8.3 Limitations

This study has examined the efficiency of algorithms when all problem data
is kept in fast access main computer memory. It is exceedingly important to the
realm of ultra large-scale applications, which are arising with increasing
frequency, to similarly examine design principles for efficient computer codes
and to determine the best algorithmic rules for the situation in which problem
data is exchanged between main computer memory and peripheral storage.

The creation and testing cf methods with ultra large-scale capabilities
to identify the precise trade-offs of mathematical and computational considera-
tions in an environment where data must be allocated and transferred between
different types of memory will require substantial research. It is our belief,
based on the present study, that the best implementation principles to emerge
from such research will be based on the design of code S3. This belief may

seem paradoxical since code $3 is clearly dominated by other codes. The belief
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largely rests on the fact that the use of peripheral storage will make it
impractical to randomly access arc data. All other codes require random
access of arc data. Further, if random access is not used then we feel that
updating the node potentials in the manner accomplished in code C3 will

prove extremely valuable.

Table III

COMPUTER ARRAY SPACE

Node
Node Arc Length
Code Length Length Logical Other
¢l 4 2 1
c2 4 2 1
C3 6 2
C4 7 2 1
C5 7 2 1
S1 5 75 1 1R + 1)
max
S2 6 2
S3 6 2 12 + 1
max
r
S4 10 2

Where r is the size of the radix.
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SUBRUUTINE S2
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DEFINITION OF VARIARLES
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ENTRIES
K LMaX POINTER TO FIRST ENMTRY OF SOKT LISTS
Y NODE + 1 NODES TO #BE SCANNED
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NODE wAS ADDED TO SOKT LIST
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S2 MAS TwO ENTRY POINTS e
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ENTRY S2v
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KK=KKke=]1D
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80 CONTINUE
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TES AND Y = TES MONCLMAX)

———— T . 2, AR —— &
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PUT THIS "ARC IN FIRST FREE LOCATION AND ADD TO BEGINNING OF
LIST Y AND yPDATE PHREDECESSOR AND UISTANCE

X=K(Y)
I=]FREE
ITREE=S (D)
S(IY=X
1¢1Y=w
H(I)=U
K(y)=1I
DlrY=TES
Ptw)=su
MEMSET

END OF SCAN OF PREDECESSOR NODE

CONTINUE
GET NEXT NODE TN BE SCANNED OFF
1=Kk(2)
1IF(1,NE,¥) GO TO 14
2=22+1

IF(2,LE,LMAXY) GO TO 13
EXIT IF NO IMPROVING ARCS FOUND
IF(MEM,EU,v) GO TO 158
SEY UP FOR NEXT PASS UfF LISTS
MEME ",
LEV=LEV+LMAX
=1
GO TO 1%
REMOVF AKC (H(I),T(I)) FOR LIST
LISt
K(Z21=S(1)
S(I)SIFREE
1FREE=]
usTC(l])
TusH(T1)

OF LISY Z

UN THIS PASS UF LISTS

Z ANU RETURN LNOCATION I TO FREE

IF SHORTEST pISTaNcE HAS REEN DECREASED (AND PREDECESSUR CHAMNGED),

SCAN ONLY THE PRtDFCESSOR NODE
IF(IULEQLPC(L)) GO TU 3
GN TO SA

CONTINUE
RE TURN
END
.l
. ) %
\\P.
\Jq
.
: '=K\J
4 %;AK i
QY
A\
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SUBROUTINE C2 3

C2 FINDS THE SHORTEST PATKS TN A{l. NODES FROM THE ROOT R
FOR THE MNFTWORK DEFINED bBY THE ARRAYS A, N, AND L,

IT RETURKNS THE SHORKTEST PATH TREE IN THE ARRAYS P ANU D,
ALL VARIARLES IN Cp ARE TYPE INTEGER,

DFFINITION OF VARIABLES

VARIAR(LE LENGTH TIF

NAME AN ARRAY MEANING

roacoooren Teoweevewe -w T aees

NODE NUMBER OF NQOOES IN THE NETWURK

R THE ROOT NODE

INF PUSITIVE CONSTANT GREATER THAN ANY
PATH LEMNGTH (I Fe +INMFINITY)

N NO, OF ARCS LIST OF TU=NODES OF THE AKRCS IN THF
NETWORK IN ORDER BY FROM NODE

L NO, OF ARCs AKC LENGTHS FOR THE ARCS IN N

A NODE+1 ENTRY POINTS INTO N AND L

ACI) POINYS TO THE FIKST ARC COuT OF
NODE I FOR I=192seee¢NOOE
A(N+1) IS 1 PLUS THE NUMBER QF ARCS

P NODE PRENECESSNKS OF THE NODES JN THE SHORTEST
PATH TREE

D NODE LENGTHS OF THE SHORTEST PATKS

CL NODE QUEUE OF NODES TO BE SCANNED

COMMON NODE,RosNC 12300),LC 120d),A0 181).DC0 301),CL( 181)
COMMON P( 1¥1),InF
INTEGER D,4, CL.P K

INITIALIZATION
Do tu¥ I=1,NQDE
SET DISTANCES TO INFINITY, CLEAR PREDECESSORS AND QUEUE

DCI)=INF

P(I)=2d
CL(I)=n <f§%
SET DISTANCE OF RONY TQ ZERU =

D(R)Y=A (J/:

SET QUEUE TO CONTAIN ONLY ROQT R '§?‘
'V

CL(R)=INF £ o
ISR "‘{ /‘

NT=K ./ A

\

MAIN LOOP OF A LGORITHY LA

SCAN THE ARCS QUT OF NMNDE I « ARCS A(l) TO A(l¢i)e]
JAzA(]e1) =
I0=D(C1)
IA1=Aa(])
IF (1AY,6T,14) GO TO 291
0N 2¢A lkesl4ay,1A
KsN(]IR)Y
COMPUTE DISTANCE Tt NODE X USING ARC (I,K)
KD=TDeL (IR
CHECK FOW DECHFASE IN SHUKTEST OJSTANCE
1F NOT IMPROVING, GET NEXT ARC
IF (KD ,GE D(K)) GO TO cuv
DECREASE OF SHORTEST OISTANCES WITH ARC (I,K)

T ; — TTEE————
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c UPDATE PREDECESSOR AND SHORTEST D1STANCE
P(x)=1l
DCK)=KD

c CHECK NHENE STATUS OF ~ODE K
IF (cLex)) t1ev,1av,24¥

c NODE X MHAg NEVER BEEn SCAMNMNED

¢ ADD NODE X TU FND OF WUEUE AFTER NODE NT

14 CL(NT)=K

C MAKE NODE K NEw ENp OF GUEUE NT ANL FLAG AS END UF QUEUE
NT=K
CL(K)=INF

G0 T 2wnd
(o NODF K HAS ALREACY BEEN SCANNED
C ADD NODE K TG BEGINNING OF QUEUE JUST AFTER NODE I

160 clL(xy=clL (1)
cL(l)=x
o NODE xk 1s ON QuEUE
28@ CONTINUE
c GET NEXT NUDE 1 FOR BEGINNING OF QUEUE
20t 1cL=cLtD) :
c FLAG NONE I AS MAVING HEEN SCANNED
CL(I)==}

I=1CL
1F (I1,LT,INF) GO TO t2v

END OF THE ALGORJITHM

(s Nale)

RETURN
END
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GRID NETWORK SHORTEST PATH TEST PRUKLFM GENERATOKR

GENFRATES MULTIPLE GRIPD NFTWORKS WITH SPECIFIED DTHENSIONS 4ND
ARC LENGTHM RANGE, EACH PRUBLEM 1§ FOLLOWED BY A LIST OF NUDES
WHICH CAN RF USFO aAS ThE RUOT LODE,

PRORLEMS AWE GENERATED N TAPE 2,

INnPUT (FROM STAMDARD SYSTEM INPUT DEVICE)

KFCORD | « RANDOM NUMBER SEED (F1R,12)

RECOKD 2 = (4lS)
MM = NUMBFR OF ROWS IN GRID
NN =« NUMRER QOF COopUmNS In GRID
MAVC « AVERAGE ARC LENGTH, ARC LENGTHS wWILL RE BETWEEN

{ AND 2»anAVC

NROQT « NUMBER GUF NUDES In THE ROOQOT VODE LIST

RECOKD 3 THRU RECORN K « NODES TU YE INCLUDED IN THE RUDT NODRE
LIST, FROM @ Ty ~ROOT NMDES CAn HE SPECIFIED, IF
FERER THAN NRUNT MNODES ARE ENTERED, THF [NPUT LIST IS
TERMINATEOD BY ENTERING & 2ERO, MNODES ARE GENERATED
RANCOMLY TO CUMPLETE THE LIST OF WRUOT NOULES,
FORMAT IS ([S),

KECOKDS 2 THRU K CaAN BE RFFPEATED FOUR AS ManY PROBLE“S AS DESIRED,
THRE LAST PROBRLEM [S FULLUWED BY A 8l ank RECURD,

PROBLEM FNWMAT
ALL RECORDS ARE WRITTEN WITH A (1K]5) FORMAT

THE PRORLFM FILE CaN CONTAINM MORE THAN ONE PrRUBLEM, WITHIN EACH
PRUBLEM,

CARD 1 CONTAINS THE TNTAL HUMRER OF NODESs THE NUMBER UF ~04S
IN THE GRIC, THE NUMBER OF COLUMNS IN THE
GRIDN, THE TOTAL NUMKER NF &4RLS, THE AVEKAGF
ARC LENGTH, NUNKHER OF NUDES IN THE LIST OF
ROQT NODES

THE ARC DATA FOLLOWS In SETS OF CARD IMAGES, EACH SET DESCKIBING
THE ARCS OuT OF A GIVEN MNOF, THE SETS GIVE THE ARKCS QUT UF
NODFE 1, NOUE 24 eeqr MNODE N, IN CGROER, THE LAST SET IS FOLLOKED
by A BLANK REC(ROD,
AITHIN THE SET OF cAWD IMAGES GEFTINING THE ARCS OUT OF A NUDE,

CArRD 1 GIVES THE NUMBER OF ARCS NUT UF THE NOUF

CARD 2 GIVES THF TU MUDES FOR THESE ARCS

CArRD 3 GLIVFS THE ARC LENGTHS,

CONTAINS ZErRC, CARDS 2 AND 3 AWE OMITTFO,
FOLLOWING THE ARC DATA IS THE LIST NF ROUT NODE CANDIDATES, ONE
PER KECORD WITn ThE LAST ENTRY HEInNG FOLLOWED BY A RLANK RECURD,

THE LAST PROMBIEM IN THE FTILE IS FOLLOWED B8Y A SECOND BLANK RECOROD,

COMMON TTN(4),IDIST(4)
REwWIND 2

ENTER RANDOUM NUMHBER SEED
READ(),14v1) SEED
FORMAT(FIN IV)

BRSO Shie B e A o o R st
Elim S e e o - 5 T e c——
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ENTER PROBLEM PARANFETERS « NUMRER OF KOWS AND COLUMNS IN GHID,
AVERAGE ARC LENGTH, NUMBER OF RQUTS T0O BE GENERATED
B ANK RECOKD TERMINATES INPUT
"] READ(1,100) MM, NHN,NAYC,NROQOT

100 FORMAT (16]18)

(g ] n OO0 (9] o0

(g ]

0o O

o0

(o] aonnm

CALL RANF(SEED)
NODES IS TUTAL NUMpER OF NODES
NODESEMManN
NARC Is tOTAL NUMBER OF ARCS
NARCSUaNODES=2x (M 1eNNY
wRITE PROBLEM READER
NODES = ¢ 1§ TRAILER
WRITE(2,140) NOPES,MM,NN,NARC,NAVC,NROOT
IF (MM, EQ,?2) STyuP
RFPLACE AVERAGE |LENGTh RY TWICE AVERAGE LENGTH
ALL ARC LEFNGTHS wILL FROM 1 TO NaVC
NAyCz2anAay(
NARC COUNTS THE TOTAL NUMBER OF ARCS
NARC=0
GENERATE ARCS OQUT oF NODE AT GRID PNSITION (M,N) REGINNING WITH
(1,1) AND GOING ACROUSS ROWS
1 1S THE NODE nUMEER (1 TO MM#NN) FOR THE NODE AT (M,N)
MmsNz]l=)
Naz@
KsMe{
FOR “ODE (M,N) GENERATE ARCS TO NODES ABOVE AND BELOW
00 1 J=1,2
SKIP ARC IF YO MODE 1S OFF GRID
IF(K,LT,1 ,0Rr, X ,GT4MH4) GO TO 1
NA COUNTS ARCS OuT OF NODE (M,N)
NASNA+!
10 Is Tu NODLE
ITO(NA)S(Kel)aNMNgN
IDIsT I§ ARC LENGTH RETWEEN 1 AND NAVC
IDISTI(NAYSNAVCHRANF (4) +1
KSK+2
KSNew{
FOR NODE (M,MN) GENERATE ARCS TO NODES 7O LEFT AND RIGHT
00 3 J=t,2
IF(KoLTol OF, K ,GTyNN) GO TO 3
NASNA+]
ITO(NA) g (Mal)*NN4K
IDIST (nA)sNAVCAaRANF(A) ¢
KzKe 2
WRITE DUT NIIMBER OF ARCS
wRITE(2,1n1) MNA
NARC=NARC ¢+NA
IF(N‘QEQQ”) GO TU 4
WRITE UUT TO NONDES AND LENGTHS OF ARCS OuT OF NODE I
SklP IF NOMNE
WRITE(2,thn) (ITO(K),K=1,NA)
WRITE(2,190) (JDIST(X),k=1,NA)
ADVANCE 10 NEXT nNODE
12]¢!
CHECK IF DONE ;
IF(1,GT,NODES)Y GO TO S
MOVE TO NEXT COLUMHK
NENh+ |
IF(N,LE,NNY GO 1D 2

o= S IR AT = - -
N NI i i : e ——
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MOVE TO NEXT ROw
NE )
Marie
GO Y0 2
LR=w
READ MEXT NODE TO RE INCLUDED IN ROOT NOLE LIST
KEAD(1,1¢2) KR
7ERD TERMINATES INPUT NF SPECIFIED ROOCTS IF FEWEK THAN NROOT
NODES ARE ENTERED, o
IF(NRLEQ,) GU T1) &
NODE ENTERED MyST RE DISTINCT FROM PRECEDING KOOT IN LIST
IF(NR,EA,LR) GU TO 7
wRITE(2,100) NKR
LR=NR
NROOT=ARODY=
GN 10 7
STQP AFTER NROOT NMODES MAVE BEEN ENTERED
IF(NROOT LE,p) GO TO 8
GENERATE REMAI JING ROUTS RANOOMLY,
T=SRANF () aNODES ¢}
IF(1,GT,400FSY G TOU 9
NODF GENERAYED ™MusY RE DISTINCY FROM PRECEDING ROOT IN LIST
IFC(I,FA,LR) GO Tu 9
WRITE(2,140) I
LR3Il
NRDOO 1 =vRONYe=
GN TO o
WRITE OUY NEXT RUOT NODF
NRzA TERMINATFS LTIST
WRITE(2,1V0n) NK 4 ’
PRINT 1@¢,NODES,NARC , MM, NN,NAVC,NROOT p.
GO YO 19 ¢
END
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RANDUM NETWORK SHORTEST PATH TEST PROBLEM GENEWRATOR

GFNEWATES MULTIPLE RAMDOM NFTWORKS wITH SPECIFIED DENSITIES AND
ARC LENGTH RANGFS, FACH PrRUdLEM IS FOLLOwWED BY A LIST OF NODES
wWHICH CAN BE USED AS THE RUOT NODF,

PRUBLFMS AKF GENFERATED ON TAPE

InPUT (FROM STANDARD SYSTEM INPUT DEVICE)

RECORD 1 « RANDOM NUMBER SEED (F13,1@)

RECORD 2 = (415) -
N = NUMRER OF NNNDES IN PROBLEM, ZERO TERMINATES INPUT

NAN = AVERAGE NUMHER (F aRCS LEAVING EACH NODE, EACH
NODE wILL HAVE FRUM & TU 2*NAN ARCS,
NAN MUST NOT HBE GRFATER THAN N / 2,
LAVE = AVERAGE ARC LENGTH, ARC [ENGTHS wILL BE OETWEEN
1 AND 2% AVE
NROQT = NUMRER OF MODES TN THE RCOT NODE LIST
RECORD 3 THRU RECNRD K = NODES TO BE InCLUDED IN THF ROQT ~NODE
LIST. FROM @ TO NRUOY NODES Can @bk SPECIFIED, IF
FEWER THAN NRUDOT NODES ARE ENTERED, THE I6PUT LIST 1S
TERMINATED RY FWNTERING A Z2ER0O, NODES ARE GENERATED
RANDOMLY TU CUMPLETE THE LIST OF NKOOT NODES,
FORMAT IS (1IS),

RECNNDS 2 THRII K CAN BE REPEATED FOR AS MANY PROBLEYS AS DESIRED,
THE LAST PROHLEM IS FOLLUWED BY A BLANK KECOKRD,

PROBLEM FORMAT
ALL RFCORNS ARE wRITTEN WITH A (1615) FORMAT

THE PRORLFM FILE CaAN CONTAIN MORE THAN ONE PROBLEM, WITHI~ EACH
PROBLEM,

CARD 1 CONTAINS THE NUMBER OF NQDES, AVEWAGE LENGTH UF EACH
ARC, AVFRAGE NumpEK UF ARCS LEAVING EACH ~NOOE,
NUMBER OF NODES TO Bk USED AS KQUT NODES,

THE ARC DATA FOLLNwS IN SFTS OF CAxD IMAGFS, EACH SET DESCHIBING
THE ARCS Out OF A GIVEN HNODE, THF SETS GIvE THFE ARCS QUT UF
NODE 1, NNDE 2, eseer NODE wn, IN DRUFR, THE LAST SET IS FOLLOwWED
BY A RLANK RECORD,
wITHIN THE SET OF CARD I~AGES ODEFInIHG THE ARCS ONT UF A NODE,
CARD 1 GIVES THE wNU“ARER OF ARCS CUT OF THE ~DOE Y
CARD 2 GIVES THE TO MUDES FOR THESE AKCS
CARD 3 GIyES THF ARC LENGTHS,
1F CARD 1 CnrTAI NS ZERD, CARDS 2 AND 3 ARE OmMITTED, IF CAKD |
INDICATFS MOKE THAN 1n ARCS, CARPS 2 AwD 3 ARE REPEATED AS
NECESSawY,
FOLLOWING THE ARC DATA IS THWE LIST OF ROUT NODE CANDIDATES, ONE
PFR RECOKND WITH THE LAST ENTRY BEING FOLLOWED BY A HLANK RECURD,

THE LAST PROBLEM IN THE FILFE IS FOLLUWED BY A SECOND BLANK RECORD,
LOGICAL Oup

DIMENSION NLIST(gUA) ,NOTST(S5UR),00uP(25v¢)
REWIND 1
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C ENTER RANDOM NUMHER SEED
READOIN,SEED
60y FORMAT(FLlun,10)
1 CALL RAMF(SEED) _
C ENTER NUMRER OF NOPDESe AVERAGF NUMHBER OF ARCS PER NODE, AVERAGE
c ARC LFNGTH, aND NUMBER OF ROCTS,
READ SuA,N,NAN,LAVF,NROOT
IF(N JLE.2) GU TO 2¢wn
K=@
KK=K
WRITE(1,520) N,MAN,LAVE,NROOT
c GENERATE AWC DATA
KKz
00 4y I=1,N
DUP IS A LOGICAL ARRAY SUCH THAT NpUP(J)Y = ,TRUE, IF AN ARC FORM
NODE T TU NOUE J HAS ALREADY REEN GENERATED AND FALSE,
OTHERWISF,
00 Ul J‘—'l'N
41 LUP(J)= FALSE,
MMS2aRANF (A) *NANSA S
WRITE(]1,501) MM
IF THRERF AKE NO ARCS OUT OF NODE 1, SKIP Tn NODE AND ARC LENGTH
GENERATION
1F (MM EQ, ©) GO TO v
K=MM
KK=KK+K
(o GENERATE ARC LENGTHS FOR THE K ARCS OUT QF NODE I
00 5S4 J=1,k
NDIST(J)=2xLAVEXRANF (A) ¢}

aNeNe

e Rl

50 CONTINUE
DO aa L=1,K
81 YSRANK (1)
o LL IS NEXT Tgu nNODE 3
LLsN=®Y+{ T § ol
IF(LLoGTeN) LLEN ' AOLE TTiIDVY
C CHMECK FOR ARC DuUPLICATIOWN & Liﬂf‘i

IF(DUPCLL)) GO Tu B
DUP(LL)Y=,TRUE,
NLIST(LY=LL
By CONTINUE
46 CONT INUE
c wRITE OQuTt TN NODES AND LENGTRS NF ARCS OUT OF NODE I
WRITECY,S500) (NLIST(IY,J=1,K)
WRITE(1,Sn) (KRDISTISY, d=1,K)
4v CONTINUE
Sy FORMAY(101S)
(o K 1S TOTAL NyuMReR OF ARCS
KSKK
PRINT Sni,N,K,NROOT,LAVE
SO1 FORMAT (IHN,4d]1H)
LR=1
READ NEXT NODE TU RE IMCLUDED IM ROOT NNDE LIST
S KEAD SuU¥,nNR
I =NR
IFI(NR,NELP) GO Tp 92

©
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7ERD TERMINATFS INPUT OF SPECIFIED ROOTS IF FEWER THAN NROOY
NODES AKRE ENTEKFUL, 8
GFNERATFE REMAINING ROOTS RAMDOMLY,
4 ISKANF(0) aN¢
IF(I.GT,n) Gu TO 94 .
NODE GENERATED “UST RE DISTINCT FROM PKRECEDING RUOT IN L1SI
2 IF(1,FQ,LRY GU To 93

WRITEC(1,Sa2) 1
LR=1
NROOT=NRONT =1
c SYUP AFTER MROOT NODES HAVE WEEN ENTERED
IF(NROOT4LE.Y) Gy TO 95

- Belakel

o0

93 IF(NR ,GT @) GO TO S

GO Y0 94
c WRITE TRAILER RECORD FQR ROOT NOUE LIST
95 I=4

WRITE(1,5¢0) 1

GO TO 1

C WRITE TRAILER RECORD FQOR FILE
202 WRITE(],53r) N

$T0P

END

F Lt
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UPDATE PREDECESSOR AND SHORTEST DISTANCE
P(K)=I
D(K)=KD

CHECK QUEUE STATUS OF NODE K
IF (CL(K)) 160,140,200

NODE K HAS NEVER BEEN SCANNED

ADD NODE K TO END OF QUEUE AFTER NODE NT
CL(NT)=K

MAKE NODE K NEW END OF QUEUE NT AND FLAG AS END OF QUEUE
NT=K
CL(K)=INF
GO TO 200

NODE K HAS ALREADY BEEN SCANNED

ADD NODE K TO BEGINNING OF QUEUE JUST AFTER NODE I
CL(K)=CL(T1)
CL(1)=K
1 (NT.EQ. 1) NT K

NODE K 1S ON QUEUE
CONTINUE

GET NEXT NODE I FOR BEGINNING OF QUEUE
ICL=CL(I)

FLAG NODE I AS HAVING BEEN SCANNED
CL(I)=-1
I=ICL
IF (I,LT,INF) GO TO 120

END OF THE ALGORITHM

RETURN !
END !




